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Abstract
Wearable robots can help users traverse unstructured slopes by providing mode-specific hip, knee, and ankle joint assis-
tance. However, generalizing the same assistance pattern across different slopes is not optimal. Control strategies that scale 
assistance based on slope are expected to improve the feel of the device and improve outcome measures such as decreasing 
metabolic cost. Prior numerical methods for slope estimation struggled to estimate slopes at variable walking speeds or were 
limited to a single estimation per gait cycle. This study overcomes these limitations by developing machine-learning methods 
that yield continuous, user- and speed-independent slope estimators for a variety of wearable robot applications using an able-
bodied wearable sensor dataset. In a leave-one-subject-out cross-validation (N = 9), four-phase XGBoost regression models 
were trained on static-slope (fixed-slope) data and evaluated on a novel subject’s static-slope and dynamic-slope (variable-
slope) data. Using all available sensors, we achieved an average error of 0.88° and 1.73° mean absolute error (MAE) on static 
and dynamic slopes, respectively. Ankle prosthesis, knee-ankle prosthesis, and hip exoskeleton sensor suites yielded average 
errors under 2° MAE on static and dynamic slopes, except for the ankle prosthesis and hip exoskeleton cases on dynamic 
slopes which yielded an average error of 2.2° and 3.2° MAE, respectively. We found that the thigh inertial measurement unit 
contributed the most to a reduction in average error. Our findings suggest that reliable slope estimators can be trained using 
only static-slope data regardless of the type of lower-extremity wearable robot.
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Introduction

Analyses of able-bodied slope ambulation reveal that human 
biomechanics vary with slope. Specifically, range-of-motion, 
peak flexion, and peak extension angles for ankle, knee, and 
hip joints vary across slopes [1–4]. On increasing posi-
tive slopes, across different walking speeds, able-bodied 

biomechanics shows there is an increase in average indi-
vidual leg total positive work—primarily generated by the 
ankle. Additionally, on decreasing negative slopes, across 
different walking speeds, there is an increase in average indi-
vidual leg total negative work—primarily generated by the 
knee [4].

Slope-specific biomechanics are also observed in users 
of wearable robots [5–8]. Seo et al. provided able-bodied 
hip exoskeleton users with equal levels of output torque as 
they walked on slopes of 0, + 5, and + 10% grade. Meta-
bolic costs were reduced by 13.5, 15.5, and 9.8% at 0, + 5, 
and + 10% grade, respectively, relative to a no-exoskeleton 
condition. Although output torque was fixed, hip joint kin-
ematics were affected by the slope which led to an increase 
in exoskeleton power with increasing slopes [5]. Franks et al. 
sought to optimally assist able-bodied exoskeleton users on 
slopes using human-in-the-loop optimization algorithms. 
For all slopes (+ 5°, + 10°, and + 15°), metabolic costs were 
reduced by at least 50% relative to a no-assistance condition. 
Exoskeleton hip and knee extension torque were shown to 
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increase with steeper inclines [6]. Maclean et al. found that 
able-bodied knee exoskeleton users achieved a 4.2% reduc-
tion in metabolic cost when walking on a + 15° incline with 
a backpack load. Exoskeleton assistance was tuned based 
on user preference and no joint torque information was pro-
vided [7]. Sup et al. also chose to tune knee-ankle prosthesis 
assistance based on user preference. Knee and ankle joint 
torque were shown to increase with steeper inclines (0°, + 5°, 
and + 10°) for a transfemoral amputee user [8]. These studies 
reveal that users of wearable robots benefit from or prefer 
slope-specific assistance. Therefore, methods of slope esti-
mation are needed to appropriately scale assistance during 
wearable robot usage.

Ambulatory slope estimation has primarily been 
attempted using tilt estimation [9–11], direct integration 
[12–15], kinematic modeling [16–18], extended Kalman 
filters (EKF) [19], and machine learning [20–22] methods. 
In tilt estimation, slope angle is determined by calculating 
the inverse tangent of the ratio between the normal and 
tangential linear acceleration obtained from an acceler-
ometer placed at the foot. This computation takes place 
during midstance when the foot is flat on the ground [9]. 
Direct integration methods integrate foot or shank IMU 
signals to track linear and angular displacements from 
which slope can be computed. To avoid drift, integration 
initial values are reset during midstance when the foot and 
velocities are assumed to be zero [12–15]. Kinematic mod-
eling methods use joint angle information and kinematic 
relationships to calculate slope during foot-to-ground con-
tact [16, 17]. Some studies involving direct integration or 
kinematic modeling reported that slope estimation per-
formance was negatively impacted by walking speed [13, 
18]. Medrano et al. introduced an EKF method of slope 
estimation that used sensor measurements obtained from 
an ankle exoskeleton to continuously track slopes [19]. 
Unlike regular Kalman filters [23], EKFs can track the 
state of a system (slope) even if non-linearities are present 
in system dynamics and sensor-state relationships. In this 
study, we assume linear system dynamics and utilize a 
Kalman filter to smooth slope estimates output by machine 
learning models. Machine learning methods use regression 
models trained with wearable sensor information to con-
tinuously estimate slope [20–22, 24, 25]. Slope estimation 
methods that are constrained to only estimate slope during 
midstance cannot keep up with changes in slope that occur 
outside of midstance. It is necessary to do so since able-
bodied individuals show biomechanical adaptations to 
changes in slope during swing. During swing, hip and knee 
flexion angle increase as slope increases to help the indi-
vidual clear the ramp angle [1]. Thus, continuous methods 
of estimation are preferred here. Machine-learning meth-
ods were chosen over EKF methods since machine learn-
ing models can learn inter-subject variability, interactions 

between speed and slope, and device-specific dynamics 
that impose sensor noise—processes that impede EKF 
implementation [19].

This paper describes machine-learning methods for 
continuous slope estimation and an expansion of those 
methods to multiple lower-limb wearable robot applica-
tions. Sensor sets were chosen based on sensors intrinsic to 
lower-limb wearable robots. We improve upon prior user-
dependent machine-learning methods [20, 21, 24] by pro-
viding user- and speed-independent slope estimation solu-
tions. User-independent (IND) estimators are trained with 
multi-subject datasets and evaluated with novel subject 
data [21, 24, 26] while user-dependent (DEP) estimators 
are trained and evaluated with subject-specific data [20, 
24, 27]. IND estimators are a more practical solution for 
slope estimation than DEP estimators since they can gen-
eralize well to novel subjects without additional data col-
lection. In addition, given that able-bodied biomechanics 
vary with walking speed [28], we varied walking speeds 
during data collections so that resulting slope estimators 
may be robust against changes in walking speed. Machine-
learning architectures, feature extraction methods, Kalman 
filter parameters, and feature sets are optimized for the 
following device cases: ALL (includes all sensors), knee-
ankle prosthesis (KA), ankle prosthesis (AN), and hip exo-
skeleton (HE) (Fig. 1).

We hypothesize that slope estimators trained with only 
static-slope data can estimate both static- and dynamic-slope 
data belonging to novel subjects with similar performance to 
existing methods–which would eliminate the need to collect 
dynamic-slope data in future implementations. In line with 
sensors used in direct integration methods, we anticipate 
distal sensors to be of higher importance to slope estimators 
as they provide richer foot-to-ground contact information. 
Lastly, we hypothesized that nonlinear models (i.e., Neural 
Network and XGBoost models) would outperform linear 
models (i.e., Linear Regression models) due to the com-
plexity of estimating slopes at varying walking speeds—a 
limitation encountered when implementing numerical slope 
estimation methods [13, 18]. The novel contribution of this 
work is the development of continuous user-independent 
machine learning algorithms that estimate slope independ-
ent of speed for multiple wearable robot applications.

Materials and Methods

Our study consisted of nine able-bodied subjects (6 males 
and 3 females) with an average (mean ± 1SD) age of 
21.6 ± 2.8 years, height of 1.76 ± 0.10 m, and body weight 
of 72.0 ± 12.4 kg. This experiment was approved by the 
Georgia Institute of Technology IRB.
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Sensors

Subjects were unilaterally instrumented (4 right and 5 
left) with three 6-axis YOST 3-Space LX Embedded iner-
tial measurement units (IMUs) and three two-degree-of-
freedom (2-DOF) Biometrics electrogoniometers (GONs). 
By maintaining a fair split of right- and left-instrumented 
subjects, we ensured that our estimators were trained to 
perform regardless of leg dominance or unilateral set up. 
Each IMU was of 16-bit resolution and ± 8 g and ± 1000°/s 
full scale ranges. IMUs were placed on the foot, shank, 
and thigh. Each GON was of ± 0.1° resolution and ± 180° 
full scale range. GONs were placed at the ankle (frontal 
and sagittal), knee (sagittal), and hip (frontal and sagit-
tal). Ground reaction forces and moments (LOAD) were 
measured using a Bertec Instrumented Treadmill (Bertec 
Corp., Columbus, OH, USA). The location of each sensor 
is shown in Fig. 1.

Data Collection

Each subject was instrumented with six sensors (3 IMUs and 
3 GONs) and completed 17 walking trials: 13 static-slope 
and 4 dynamic-slope trials. Static-slope trials involved walk-
ing on fixed slopes at varying walking speeds. Dynamic-
slope trials involved walking on variable slopes at fixed 
walking speeds. Slopes and walking speeds were modulated 
with a Bertec instrumented treadmill. Static-slope trials were 
collected for each slope between − 15° and + 15°, incre-
mented by 2.5°. Slopes were fixed while walking speeds 
were imposed in the following order: 0.6, 0.8, 1.0, 1.2, 1.4, 
1.3, 1.1, 0.9, and 0.7 m/s. Each walking speed was held con-
stant for 10 seconds then modulated to the next speed at 
0.2 m/s2. The total length of each static-slope trial was 108 s. 
Four dynamic-slope trials were collected—one trial for each 
unique combination of walking speed (1.0 or 1.2 m/s) and 
slope direction (positive or negative). For each trial, walking 
speed was held constant while slopes were imposed in the 
following order: 0°, ± 1°, ± 3°, ± 5°, ± 7°, ± 9°, ± 10°, ± 8°, 
± 6°, ± 4°, and ± 2°. Each slope was held constant for 10 s 
then modulated to the next slope at 0.1°/s. The total length 
of each dynamic-slope trial was 310 s. Positive and negative 
slope trials were collected separately due to the mechanical 
limitations of the Bertec treadmill.

Data Processing

IMU and GON data were collected with a Rasberry Pi 3 
Model B+ at 200 Hz and 1000 Hz, respectively. Slopes, 
walking speeds, and six-axis ground reaction forces and 
moments (LOAD) were recorded at 1000 Hz using the 
Bertec Instrumented Treadmill. IMU and GON data were 
collected on the Rasberry Pi 3 using the Robot Operating 
System (ROS). Bertec Treadmill signals were collected on 
a local desktop. Signals were synced using a shared sync 
pin on the Rasberry Pi 3. During post-processing, for con-
venience to keep all data sizes the same, IMU data were 
up-sampled to 1000 Hz to match the sampling rate of Bertec 
Treadmill signals. Angular velocities of each joint were also 
calculated during post-processing. GON and LOAD data 
were filtered with a fifth-order low-pass Butterworth filter 
with a 20 Hz cutoff frequency. Signals from left-instru-
mented subjects were inverted to match the signals of right-
instrumented subjects.

Data were segmented into gait cycles by thresholding the 
vertical ground reaction force to obtain heel contact events. 
Then, gait cycles were evenly divided into four phases to 
later generate phase-specific slope estimators [29].

Sensors were divided into the three device cases (KA, 
AN, and HE) based on sensors suites commonly referenced 
in literature (Fig. 1). A fourth case incorporating all sen-
sors was included as the ALL case. The number of sensor 

Fig. 1  Experimental setup in which an able-bodied subject is com-
pleting a trial. All sensors were placed unilaterally. Sensors are 
labeled above based on the abbreviations described in the sensor leg-
end. The case legend describes the color assignments for each device 
case studied. The coloring assigned to each sensor shows the catego-
rization of sensors by device case
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channels per case totaled 34, 30, 22, and 10 for the ALL, 
KA, AN, and HE cases, respectively. More information 
regarding cases, sensors, and sensor channels is available in 
Tables IV and V in the Supplemental Material.

Feature Extraction

Five features were extracted per channel: mean, standard 
deviation, minimum, maximum, and final value [30] (Fig. 2). 
Features were extracted from a window of signal data every 
50 ms (20 Hz). Initial features and window sizes were 
selected based on their demonstrated capacity to train robust 
mode classifiers for lower limb devices [24, 26, 26, 27, 
31–33]. Features extracted from a single window served as 
one sample for slope estimators. Each sample was assigned 
a label that was the average slope of the window. Also, each 
sample was assigned a phase label (not used as a model 
input) based on the gait phase during which the last value of 
the window occurred.

Open‑Source Dataset

The filtered data is available for public access here: https:// 
www. epic. gatech. edu/ open- source- able- bodied- slope- data/. 
The dataset contains 51 sensor channels. Ankle, knee, and 
hip joint velocities were calculated during postprocessing. 
Header, speed, and slope columns are also provided. Trunk 
IMU and electromyography data were not investigated in 
this study but are included in this open-source dataset.

Machine Learning Algorithms

The slope estimation capabilities of three regression mod-
els were compared: linear regression, feed-forward neu-
ral network, and XGBoost models. Linear regression is a 
comparatively less complex approach that fits linear mod-
els to the data. XGBoost and neural network models were 
selected given their previous success in the field [20, 22, 24, 
34]. Neural networks are biologically inspired models that 
modify inputs using linear combinations of trained weights 

and map their sum with internodal activation functions to 
obtain an output of specific amplitude [35]. Neural networks 
have seen a large history of use in gait tasks, especially in 
slope estimation [20, 25]. XGBoost is a decision-tree-based 
ensemble algorithm that employs optimized gradient boost-
ing techniques to sequentially build higher-performing deci-
sion trees [36]. XGBoost models have recently emerged as a 
leading classification algorithm for gait tasks involving fall 
detection [37], gait decoding [38], locomotion phase [39], 
and mode identification [24, 33]. This comparison between 
linear and non-linear machine learning models will help 
detail the level of complexity associated with estimating 
slopes at varying walking speeds.

Kalman Filter

Walking on slopes at different walking speeds introduces 
non-steady-state gait that can negatively impact the perfor-
mance of regression-based slope estimators. Kalman filters 
can help offset the issue by fusing uncertain measurements 
with prior state information to produce better slope esti-
mates. Kalman filter calculations were divided into predic-
tion (Eqs. 1 and 2) and update stages (Eqs. 3 and 4).

In the prediction stage, a predefined model of the system 
(Eqs. 1 and 2) was used to compute the next slope estimate 
and slope estimate uncertainty (pn+1,n). We chose to model 
the environment as a static system due to the relatively small 
changes in slope that occur between timesteps during static-
slope and dynamic-slope trials. State (Eq. 1) and Covariance 
(Eq. 2) Extrapolation equations are defined as follows:

where x̂n+1,n is the predicted slope estimate, x̂n,n is the cur-
rent slope estimate, p̂n+1,n is the predicted slope estimate 
uncertainty, and p̂n,n is the current slope estimate uncer-
tainty, and qn is the current process noise. A process noise 
is included in Eq. 2 to account for uncertainties in the system 

(1)x̂n+1,n = x̂n,n

(2)p̂n+1,n = p̂n,n + qn

Dynamic Ramp Ambulation Continuous Feature Extraction Machine Learning Algorithms

IMU

LOAD

GON

Kalman Filter

MEAN
MAX

MIN

STD DEV

FINAL

ERROR

SLOPE SLOPE
ESTIMATE

Fig. 2  Slope estimation pipeline used to continuously estimate slope 
during slope ambulation (offline). Signals included linear accelera-
tions, and rotational velocities from three IMUs, joint angles from 
three goniometers, and ground-reaction forces and moments from 
treadmill force plates. Data was segmented into four phases—roughly 
early stance, late stance, swing flexion, swing extension. Features 

(minimum, maximum, mean, standard deviation, and end value) are 
extracted from a rolling buffer of data for a fixed window size. A 
new row of data is added to the buffer at 20 Hz. Extracted features 
were fed into slope and error models to obtain slope and uncertainty 
estimates. Lastly, a Kalman filter smooths final slope estimates given 
model outputs

https://www.epic.gatech.edu/open-source-able-bodied-slope-data/
https://www.epic.gatech.edu/open-source-able-bodied-slope-data/
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dynamic model and produce estimation errors. Here, process 
noise is unitless because it models multiple error-inducing 
factors such as modeling errors, unmodeled dynamics, and 
external disturbances.

In the update stage, current and previous state informa-
tion is used to update current Kalman variables (Eqs. 3, 4, 
5). The Kalman Gain, State, and Covariance Update equa-
tions are defined as follows:

where Kn is the current Kalman Gain, x̂n,n is the current 
slope estimate, x̂n,n−1 is the previous slope estimate, zn is the 
current slope measurement, rn is the current slope measure-
ment uncertainty, p̂n,n is the current slope estimate uncer-
tainty, and p̂n,n−1 is the previous slope estimate uncertainty. 
Measurements, estimates, and uncertainties were measured 
in degrees.

(3)Kn =
p̂n,n−1

p̂n,n−1 + rn

(4)x̂n,n = x̂n,n−1 + Kn

(

zn − x̂n,n−1
)

(5)p̂n,n = (1 − Kn)p̂n,n−1

Analyses

The following analyses were completed for each case using 
a leave-one-subject-out cross-validation: (1) Model Opti-
mization and (2) Window Size optimization, (3) Kalman 
Filter Optimization, (4) Sensor Selection, and (5) Slope 
Estimation. Only static-slope data were used during steps 
1-3. Static-slope and dynamic-slope trial data were used to 
evaluate the optimized pipeline during steps 4 and 5. Models 
were evaluated using mean absolute error (MAE) ± standard 
error of the mean (SEM).

Model Optimization

The slope estimation performances of the following three 
regression models were compared using a window size of 
250 ms: linear estimator (LNR) from the Sklearn library, 
feed-forward neural network (NN) from the Keras library, 
and extreme gradient boosting decision tree (XGB) from the 
XGboost library (Fig. 3).

A total of four machine-learning models (one model for 
each of the four gait phases) were optimized and evaluated 
for each model type (e.g., XGB). Phase-specific errors were 
averaged to attain a comprehensive error for each trial. For 

Fig. 3  Cross-subject user-independent performance comparison of 
optimized XGB, optimized NN, and LNR models on static-slope 
estimation for each. Hyperparameters that yielded the lowest aver-
age MAE errors (across all four phases) were selected as the optimal 
set. A window size of 250 ms and increment size of 50 ms was used 
during this analysis. When averaged across all cases, slope estimation 
errors of 1.75° ± 0.13°, 2.19° ± 0.18°, and 3.07° ± 0.86° MAE were 

achieved for XGB, NN, and LNR, respectively. Given that the XGB 
model was shown to outperform all other models, the XGB model 
and its optimized hyperparameters were used in later analysis. Hyper-
parameters of the optimal XGB model for each case are listed in 
Table I in the Supplemental Material. Error bars represent the ± SEM. 
Asterisks indicate statistical significance (p < 0.05)
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XGB and NN, each combination of hyperparameters was 
explored. LNR models do not have hyperparameters to 
optimize. Models were trained with only static-slope data. 
Static-slope data of each training subject (N = 8) were split 
into training (80%) and validation (20%) sets. Then, these 
subject-specific sets were combined to form a multi-subject 
training and validation set. The validation set was used to 
implement an Early Stopping criterion of 5 rounds while 
training slope estimators. Slope estimators were evaluated 
using all the static-slope data of the testing subject (N = 1). 
The resulting optimized XGB model hyperparameters can 
be found in Table I in the Supplemental Material.

Window Size Optimization

The optimal window size was determined by comparing the 
performances of optimized XGB models (obtained from 
the Model Optimization analysis) across 50, 100, 150, 200, 
250, 300, 350, 400, 450, and 500 ms window sizes. Identical 
training and testing methods to those mentioned in Model 
Optimization were used. The only difference was that this 
analysis was conducted using only XGB models and window 
size was not fixed. Optimized window sizes are listed in 
Table II in the Supplemental Material.

Kalman Filter Optimization

Optimized 4-phase XGB models and window sizes were 
used during the optimization of Kalman filter process noise. 
Process noise is an uncertainty measurement of our modeled 
system dynamics. Process noise can significantly impact the 
effectiveness of a Kalman filter. To determine the process 
noise of our system dynamics we chose to tune process noise 
to minimize estimation error. We ran a leave-one-subject-
our cross-validation across multiple values of process noise 
to determine the process noise that best smooths our slope 
estimates. Process noise values ranging from 0.1 to 1e−10 
(incremented by one order of magnitude) were tested.

Given that the studied slope estimators do not output 
uncertainty estimates and the Kalman filter requires a 
measure of measurement uncertainty, error estimators were 
trained to output uncertainty estimates (absolute error) using 
the same model inputs as slope estimators. An error estima-
tor was trained for each slope estimator (one per gait phase) 
using identical model architectures and window sizes.

Static-slope data of each training subject were split into 
four sets: a slope training set (80%), slope validation set 
(10%), error training set (5%), and an error validation set 
(5%). Subject-specific sets were combined to form multi-
subject sets. The resulting sets were used to train slope 
and error estimators with an Early Stopping criterion of 5 
rounds. An overview of slope and error model training is 
shown in Fig. A1 in the Supplemental Material.

Upon training a total of 8 estimators (4 slope and 4 error), 
a Kalman filter was evaluated on the testing subject’s static-
slope data using a selected value for process noise. Prior 
slope estimate and variance were initialized to 0 and 1, 
respectively. As test data was looped through, depending 
on the phase, a switch between phase-specific slope and 
error estimator pairs would occur. As a result of this switch-
ing logic, a single error was computed instead of averaging 
phase-specific errors. Updated Kalman filter parameters 
were maintained between gait phases. This process was 
repeated for each process noise tested. Optimized process 
noises are listed in Table II in the Supplemental Material.

Slope Estimation

For each case, using all case-specific sensors, the optimized 
estimation pipeline was evaluated through a leave-one-sub-
ject-out cross-validation. Like the Sensor Selection analy-
ses, models were trained on only static-slope data belong-
ing to training subjects and evaluated on static-slope and 
dynamic-slope data belonging to the testing subject. Results 
are shown in Fig. 4.

An additional analysis was conducted to evaluate the 
same models on more realistic test profiles. In addition to 
testing on static-slope trials (Static) and dynamic-slope trials 
(Dynamic #1), a third test set named Dynamic #2 was cre-
ated by concatenating static-slope trials with sudden jumps 
in slope. The Static test set consisted of all 13 static-slope 
trials concatenated from smallest (− 15°) to largest slope 
(+ 15°). Each static-slope trial was evaluated individually, 
then the results were concatenated in Fig. 5A. The Dynamic 
#1 test set consisted of all 4 dynamic-slope trials concat-
enated from slowest (positive and negative slopes at 1.0 m/s) 
to largest speed (positive and negative slopes at 1.2 m/s). 
Each dynamic-slope trial was evaluated individually, then 
the results were concatenated in Fig. 5B. The Dynamic #2 
test set consisted of all 13 static-slope trials concatenated 
and ordered in such a way that slopes were staggered by 5°, 
which more accurately mimicked real-world slope ambu-
lation scenarios (Fig. 5C). Unlike Static and Dynamic #1 
where each trial was individually evaluated, Dynamic #2 
was treated as one large trial during evaluations. This meant 
that Kalman filter parameters (i.e., prior slope estimate and 
variance) were not reinitialized between slopes/trials. The 
impact of adding dynamic-slope data in the training set was 
also investigated (see Fig. A5 in the Supplemental Material).

Sensor Selection

A forward sensor selection analysis was conducted to deter-
mine the most critical sensors for slope estimation. In its 
first iteration, the forward sensor selection algorithm trains 
and tests a slope estimator (i.e., an optimized 4-phase XGB 
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Fig. 4  Cross-subject and 
user-independent performance 
of optimized XGB models on 
static- and dynamic-slopes 
across cases. Each subject’s 
static-slope and dynamic-slope 
data was evaluated by optimized 
XGB models and a Kalman fil-
ter trained with static-slope data 
belonging to all other subjects. 
Mean-absolute errors of slope 
estimates were averaged across 
subjects and plotted above 
for each case. Slope estima-
tion errors of 0.88° ± 0.10°, 
1.05° ± 0.16°, 1.26° ± 0.13°, 
and 1.37° ± 0.25° MAE were 
achieved for static slopes. Errors 
of 1.73° ± 0.24°, 1.64° ± 0.19°, 
2.22° ± 0.10°, and 3.24° ± 0.26° 
MAE were achieved for 
dynamic slopes. Error bars 
represent the SEM. Asterisks 
indicate statistical significance 
(p < 0.05)

C)

B)A)

Fig. 5  Slope tracking of the Static (a), Dynamic #1 (b), and Dynamic 
#2 (c) test sets. Dynamic #2 is comprised of reordered static-slope 
data. Slopes are ordered as follows: − 15°, − 10°, − 5°, 0°, + 5°, + 10°
, + 15°, + 12.5°, + 7.5°, + 2.5°, − 2.5°, − 7.5°, and − 12.5°. This order-

ing of static-slope trials is meant to simulated real-world ramp ambu-
lation where large changes of slope occur instantaneously. A Kalman 
filter is used to filter estimates produced by optimized, user-independ-
ent, phase-specific slope estimators
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model paired with a Kalman filter) using only one sensor’s 
features. This process is repeated for all available sensors. 
The sensor that yields lowest error is considered the “best” 
sensor and is used in the next iteration. Successive iterations 
test combinations of the “best” sensors with each remain-
ing sensor until all combinations are exhausted. Sensors 
were selected based on the lowest average of cross-subject 
error. Identical training and testing methods to those men-
tioned in Model Optimization were used with the addition of 
dynamic-slope test data. Sensor selection results are shown 
in Fig. 6.

An additional analysis was conducted to assess the impact 
of individual sensors and sensor channels. This was a shorter 
analysis in which models were trained and evaluated on only 
static-slope data. Results are available in Fig. A4 in the Sup-
plemental Material.

Statistical Analysis

A two-way repeated-measures ANOVA (p < 0.05) was used 
to determine the effect of optimized regression model choice 
on static-slope estimation for each case. In this analysis, 
case, model type, and subject were defined as independent 
variables, and MAE was the dependent variable. For each 
case, a one-way repeated measures ANOVAs (p < 0.05) was 
used to compare model performance across static-slope 
and dynamic-slope trial types. Trial type and subject were 
defined as independent variables and MAE error was the 

dependent variable. Similarly, multiple one-way repeated 
measures ANOVAs (p < 0.05) were used to determine the 
significance of error drops due to adding sensors to the sen-
sor suite. Sensor and subject were defined as independent 
variables.

Results

The comparison between optimized XGB, NN, and LNR 
models revealed that non-linear models (XGB and NN) 
yielded significantly (p < 0.05) lower cross-case average 
errors (XGB; 1.75° ± 0.13° and NN; 2.19° ± 0.18° MAE) 
than linear models (LNR; 3.07° ± 0.86° MAE) (Fig. 3). This 
result falls in line with our hypothesis that non-linear models 
would outperform linear models. Only the HE case yielded 
the same result. Across all cases, XGB models achieved 
lower errors than NN and LNR models. As a result, the XGB 
model was selected for subsequent analyses. XGB hyper-
parameter optimization results are shown in Tables I in the 
Supplemental Material.

An optimization routine of window size was conducted. 
All cases yielded an optimal window size of 450 ms. A 
Kalman filter optimization across cases resulted in process 
noise values of 1e−5, 1e−5, 1e−6, and 1e−6 for the ALL, 
KA, AN, and HE cases, respectively. Optimal window sizes 
and process noises are listed in Table II in the Supplemental 
Material.

Fig. 6  Cross-subject and user-independent sequential forward sen-
sor selection for the ALL case using an optimized XGB model. Sen-
sors were selected based on the average MAE obtained from test-
ing each model on a novel subject’s static-slope and dynamic-slope 
data. Sensors are listed (left to right) in the order they were selected 
by the forward sensor selection algorithm (i.e., Thigh IMU, Thigh 

IMU + LOAD, Thigh IMU + LOAD + Ankle GON). Slope esti-
mation errors from left to right were 2.77° ± 0.54°, 1.90° ± 0.28°, 
1.58° ± 0.20°, 1.46° ± 0.16°, 1.36° ± 0.26°, 1.37° ± 0.26°, and 
1.42° ± 0.32° MAE. Error bars represent the ± SEM. Asterisks indi-
cate statistical significance (p < 0.05)
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Optimal XGB models, window sizes, and process noises 
were used to evaluate slope estimation performance across 
static and dynamic slopes. For static slopes, slope estima-
tion for ALL, KA, AN, and HE cases respectively achieved 
cross-subject error rates of 0.88° ± 0.10°, 1.05° ± 0.16°, 
1.26° ± 0.13°, and 1.37° ± 0.25° MAE. For dynamics slopes, 
cross-subject error rates were 1.73° ± 0.24°, 1.64° ± 0.19°, 
2.22° ± 0.10°, and 3.24° ± 0.26° MAE. A bar plot of these 
results is shown in Fig. 4. A statistical comparison between 
static-slope and dynamic-slope estimation performance 
revealed that for each case estimating static slopes yielded a 
significantly (p < 0.05) lower error than dynamic slopes. A 
representative plot for static- and dynamic-slope tracking is 
shown in Fig. 5. Most of the errors experienced in the ALL 
case occurred on the extreme slopes (− 12.5° and + 12.5°) 
and between − 2.5° and 0° (Fig. A2 in the Supplemental 
Material). With respect to walking speed, higher errors were 
found at the lower speeds of 0.6–0.8 m/s (Fig. A3 in the Sup-
plemental Material).

The forward sensor selection for the ALL case is shown 
in Fig. 6 and reveals a decline in estimation errors when spe-
cific sensors are added to the sensor pool. The Thigh IMU 
alone achieved an error of 2.77° ± 0.54° MAE. Sequentially, 
adding LOAD (− 0.87° MAE), Ankle GON (− 0.32° MAE), 
and Knee GON (− 0.12° MAE) sensors resulted in a signifi-
cant reduction of error. After Knee GON, additional sensors 
did not significantly affect error.

Three additional analyses were conducted to (1) investi-
gate the performance of XGB models on more realistic slope 
profiles, (2) assess the benefit of adding dynamic-slope data 
to the training set, and (3) examine the contribution of sensor 
channels. The results of analysis 1 and 2 are shown in Fig. 
A5 in the Supplemental Material. Results for analysis 3 are 
shown in Fig. A4 in the Supplemental Material.

Discussion

The results indicate that strong performance (less than 2° 
of error for static-slope estimation) can be achieved in a 
user- and speed-independent manner regardless of the sen-
sor configuration for the 3 different wearable robot test 
cases (Fig. 4). In prior work, continuous slope estimation 
achieved error rates of less than 1° using direct integration 
[15], 2.4° RMSE using EKF [19], and 1.25° [22], 1.3° [20], 
and 1.5° [21] RMSE using machine-learning. Notably, our 
methods achieved comparable slope estimation errors under 
difficult circumstances—across an expansive set of static 
and dynamic slopes, at variable walking speeds, with novel 
subjects. We found that on average, across all cases and sub-
jects, XGBoost and neural network models significantly out-
performed linear regression models. Perhaps, linear models 
trained on only static-slope data could not cope with the 

non-linearity and variability in data presented by variable 
walking speeds, dynamic slopes, and novel users. Across 
all model comparisons, the XGBoost model performed the 
best, with the lowest errors occurring for cases contain-
ing the most sensors (Fig. 3). Evaluating models on static 
slopes yielded significantly lower error than evaluating on 
dynamic slopes (Fig. 4). This is likely due to not including 
any dynamic-slope data in the training set. A separate analy-
sis on the impact of adding dynamic-slope data to the train-
ing set resulted in a 49% reduction in error when evaluating 
on Dynamic #1 (Fig. A5). This drop in error is reasonable 
as Dynamic #1 is a concatenation of the testing subject’s 
dynamic-slope data—data with the same slope profile as the 
data added to the training set. Additionally, errors increased 
across the board when evaluating on more realistic slope 
profiles (i.e., Dynamic #2). This may be due to the sudden 
jumps in slope within the profiles. The Kalman filter was 
not modeled to handle large changes in slope. Our system 
model assumes that slope does not change between time 
steps (50 ms). This holds true for individual static-slope tri-
als and is safe to assume for dynamic-slopes that vary at 0.1 
°/s. This static assumption may not hold up for Dynamic #2 
profiles shown in Fig. 5C.

A forward sensor selection on the ALL case revealed that 
Thigh IMU, Ankle GON, and LOAD sensors contributed 
the most to a reduction in slope estimation error. The inclu-
sion of the Ankle GON and LOAD sensors in this top 3 list 
supports our hypothesis that distal sensors would provide 
the most important information to a slope regression model. 
The importance of the Thigh IMU could be explained by 
the fact that walking across steeper slopes requires more 
hip flexion movement [1–4] which is represented within 
Thigh IMU data. A deeper look into the contributions of 
LOAD channels showed that training on force data yielded 
a lower error than training on moment data or training on 
both force and moment data. For GON sensors, a combina-
tion of ankle, knee, hip GONs yielded a lower error than any 
individual GON sensor. For IMU sensors, the Thigh IMU 
yielded a lower error than any other individual IMU sensor 
or combination of all IMUs (Fig. A4). Across all selection 
analyses, the lowest error still occurred with the combina-
tion of Thigh IMU, Ankle GON, and LOAD. These results 
can help inform the selection of sensors during wearable 
robot development. The key result of our analysis is that to 
have reasonable performance, more than a single sensor is 
needed in wearable robotic applications for user-independent 
slope prediction, as any single sensor has relatively poor 
performance.

One limitation of this study is the offline nature of the 
analyses. Real-time wearable robot usage can experience 
drops in computing performance or data communication 
which can result in higher errors. It is also important to men-
tion that real-time sensor sampling rates are typically lower 
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than those presented in this study. Though, it may be the case 
that feature extraction, which compresses higher frequency 
information, can help mitigate differences in sampling rates. 
Additionally, the assistance delivered by wearable robots can 
physically deform the device itself and augment a user’s gait 
in such a way that it introduces sensor noise—noise that is 
not experienced in this study. Furthermore, wearable robot 
users of different age, height, weight, or level of impaired 
gait may present variability in data that is not represented 
in our datasets. Differences in sensor placement/locations 
between subjects and wearable robots may also affect slope 
estimation performance. Also, we assumed that electrogo-
niometers and force plates were adequate substitutes for 
encoders and loadcells used in wearable robots. Unlike 
electrogoniometers, encoders face issues with deflection and 
backlash that can have a detrimental effect on the accuracy 
of readings. Loadcells are likely less accurate than a force 
plate and are commonly located higher up on prostheses. 
Though, a comparison between an iPecs 6-DOF load cell 
and floor-mounted force plates found comparable results 
between measured forces (3.4% RMSE) and moments (5.4% 
RMSE) while walking on a prosthesis [40]. Lastly, our tests 
were limited to a treadmill and did not include “real-world” 
walking data which may represent the best-case scenario. 
We attempted to mitigate this issue by evaluating our models 
on more realistic slope profiles. It is important to mention 
that the treadmill also presented limitations in that varying 
slopes required the treadmill to be unclamped and allowed 
slight oscillation on each heel-strike which could affect true 
slope readings and introduce sensor noise.

Future work will aim to verify our assumptions by imple-
menting and testing our findings on lower-limb devices in 
real-time using the open-source able-bodied dataset detailed 
in this paper. If these methods are validated for wearable 
robot usage, the open-source dataset would enable research-
ers to train and implement device-specific slope estimators 
without the need to collect additional data. The implemen-
tation of slope estimators during device usage can help 
achieve optimal assistance on slopes. As wearable robots 
become more aware of the surrounding environment, scal-
able assistance will lead to an improved quality of life in 
users. Machine learning models that account for variations 
in walking speed paired with Kalman Filters have shown 
great promise in estimating static and dynamic slopes while 
being trained with a simple dataset. Our findings provide 
baseline architectures for accurately estimating slopes in 
lower-limb prosthesis and exoskeleton applications.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10439- 023- 03391-y.
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